Numerical Solution of Boundary Value Problems for Selfadjoint Differential Equations of 2nth Order

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solution to a class of boundary value problems of fractional differential equations

This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...

متن کامل

Boundary Value Technique for Finding Numerical Solution to Boundary Value Problems for Third Order Singularly Perturbed Ordinary Differential Equations

A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a weakly coupled system of one first order Ordinary Differential Equation (ODE) with a suitable initial condition and one second order singularly perturbed ODE subject to boundary conditions. In order to solve this system, a computational ...

متن کامل

On boundary value problems of higher order abstract fractional integro-differential equations

The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...

متن کامل

Numerical Ordinary Differential Equations - Boundary Value Problems

Consider a second-order linear 2-point boundary value problem (BVP) −z + p(x)z + q(x)z = r(x) (10.1) z(a) = α (10.2) z(b) = β (10.3) where p(x), q(x) and r(x) are given. By defining y(x) := [z(x), z (x)] T , the problem can be changed into a first-order differential system y = 0 1 q(x) p(x) y + 0 −r(x) (10.4) y 1 (a) − α = 0 (10.5) y 2 (b) − β = 0. (10.6) Remark. In general, a linear 2-point BV...

متن کامل

numerical solution of third-order boundary value problems

in this paper, we use a third degree b-spline function to construct an approximate solution forthird order linear and nonlinear boundary value problems coupled with the least square method. severalexamples are given to illustrate the efficiency of the proposed technique.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 2004

ISSN: 0862-7940,1572-9109

DOI: 10.1023/b:apom.0000027221.03481.75